M1.		 (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself); Not withdraw an electron If ref to ionic, metallic, imf etc then CE = 0 	1
		From a <u>covalent bond</u> or from a shared pair of electrons; <i>Not distort</i> <i>Not remove electrons</i>	1
	(b)	Van der Waals/ vdw/London/ <u>temporary</u> (induced) dipole/ dispersion forces;	1
		Hydrogen bonds/H bonds; <i>Not just hydrogen</i>	1
	(c)	(Large) electronegativity difference between N + H/ difference of 0.9/ N very electronegative; Insufficient to say N= 3.1 and H = 2.1	1
		Forms N δ– / H δ+ or dipole explained in words; Not N becomes (fully) negative or vice versa	1
		<u>Lone pair on N</u> attracts/forms weak bonds with H (δ+); QWC Can score M2 and 3 from a diagram	1
	(d)	Co-ordinate/dative;	
		If not correct then CE = 0. If covalent/blank mark on. Both electrons/ lone pair (on P/PH ₃) Not lone pair on hydrogen	1
		Shares/donated from P(H ₃)/ to H(δ +);	1

(e) 3 bonds and 1 lp attached to As; Must label H and As atoms Accept distorted tetrahedral not bent tetrahedral
Pyramidal/tetrahedral/ trigonal pyramidal; Not bipyramidal/triangular
(f) (Only) weak Van der Waals forces between molecules /AsH₃ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds; Accept has no H bonds. Ignore dp-dp in AsH₃ provided ammonia has stronger IMF.

If between atoms mentioned CE=0

(g) $4AsCI_3 + 3NaBH_4 \rightarrow 4AsH_3 + 3NaCI + 3BCI_3;$ Accept multiples

Break bonds CE = 0

M2. (a) <u>Hydrogen</u> bonding *(full name)*

Diagram shows at least one ^₅H **and** at least one ^₅F (*If full charges shown, M2* = 0)

3 lone pairs shown on at least one fluorine atom H-bond indicated, between H and a lone pair on F

(If atoms not identified, zero for diag) ('FI' for fluorine - mark to Max 2)

[14]

1

1

1

1

1

1

	(Max 1 if only one HF molecule shown, or HCl shown)	1
	Dipole results from electronegativity <u>difference</u> or values quoted ('difference' may be inferred)	
	(Allow explanation – e.g. F attracts <u>bonding electrons</u> more strongly than H)	1
	QoL Fluorine more/very electronegative or iodine less electronegative or electronegativity difference too small in HI Comparison required, may be implied .	1
	HI dipole weaker or bonding e⁻ more equally shared - wtte	1
(b)	NaCl is <u>ionic</u> (lattice) (Treat atoms/molecules as a contradiction)	
	(Accept 'cubic lattice')	1
	Diamond is macromolecular/giant covalent/giant atomic/giant molecular (NOT molecular or tetrahedral) (Ionic/van der Waals' = CE = 0)	1
	(Many) covalent/C-C bonds need to be broken / overcome (NOT just 'weakened' etc.) ('Covalent' may be inferred from diagram)	
	(Treat diagram of graphite (without one of diamond) as a contradiction – lose M2 but allow M3/M4])	2
	Which takes much energy or covalent bonds are strong (<i>References to van Der Waals' bonds breaking lose M3/M4</i>)	1

M3.A

[11]

M4.		(a) Oxygen more/very/highly electronegative (than hydrogen) OR oxygen has stronger attraction for <u>bonding</u> electrons / <u>bonding</u> electrons drawn towards oxygen:	
		elections drawn towards oxygen,	1
		causes higher e⁻ density round oxygen atom / causes H⁵⁺ O⊱;	1
			1
	(b)	van der Waals' forces between oxygen <u>molecules;</u>	1
		Hydrogen bonding between methanol molecules;	1
		H-B stronger than van der Waals' <i>OR</i> stronger IMF in methanol; (<i>if dipole-dipole forces in O₂ or methanol, allow comparison,</i> <i>hence max 2</i>) (<i>if ionic/covalent etc. max 1</i>) (<i>mention of bond break = CE = 0</i>)	1
			1

[5]

1

1

1

1

M5. (a) polyamide or nylon (2,4) (allow nylon without numbers but if numbers are present they must be correct)

condensation

(b)
$$H_3 \stackrel{+}{N} - CH_2 - COO$$

(c) ionic bonding in aminoethanoic acid (can only score if includes that aminoethanoic is ionic)

stronger attractions than Hydrogen bonding in hydroxyethanoic acid (e.g. stronger Hydrogen bonding in aminoethanoic acid

[5]

1

M6.		 (a) tendency / strength / ability / power of an <u>atom</u> / <u>element</u> / <u>nucleus</u> to attract / pull / withdraw electron<u>s</u> / e - density / bonding pair / shared pair 				
		in a <u>e</u>	<u>covalent</u> bond	1		
	(b)	(i)	F ₂ = van der Waals' / induced/temporary dipole-dipole / dispersion / London forces	1		
			CH₃F dipole-dipole (not just 'dipole')	1		
			HF = hydrogen bonding (not just 'H' / 'hydrogen')	1		
		(ii)	large difference in electronegativity between H and F / F most/very/much more electronegative / values '4' & '2.1' quoted <i>(not just 'high<u>er'</u>)</i>	1		
			H-F [™] dipole created or dipole clearly implied (accept arguments such as 'uneven charge in bond'/ 'polar bond' ∴ F slightly negative / H slightly positive)	1		
			attraction/bond formed between δ+H and lone pair on F (M2 / M3 may be scored from a diagram) (CE if full charges shown - lose M2 and M3)	1		

	(c)	(i)	van der Waals' / induced/temporary dipole-dipole / dispersion / London forces / attractions		
			(ignore references to dipole-dipole)	1	
			increase with the increasing M_i / size / mass / N° of e ⁻ / size of e ⁻ cloud (in the hydrogen halides) (if ionic, or if 'covalent bonds broken' = CE = 0)		
			(mark M1 and M2 separately)	1	
		(ii)	hydrogen bonding stronger than van der Waals' attraction/forces (accept hydrogen bonding is very strong / strongest) (accept arguments such as 'HF has H-bonds, others <u>only</u> have van der Waals') (not just 'HF has H-bonding')	1	
					[11]
M7.		(a)	Outer electrons are in p orbitals	1	
	(b)	dec	reases	1	
		Num	nber of protons increases	1	
		Attra	acting outer electrons in the same shell (or similar shielding)	1	
	(c)	Sulf	ur molecules (S $_{\circ}$) are larger than phosphorus (P $_{4}$)	1	
		The	refore van der Waals' forces between molecules are stronger	1	
		The	refore more energy needed to loosen forces between molecules	1	

(d)	Argon particles are single atoms with electrons closer to nucleus			
	Cannot easily be polarised (or electron cloud not easily distorted)	1		

[9]